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ABSTRACT

In the previous reportm, t’he fundamental equation that
describes limit cycles in nonlinear sampled-data systems has
been derived. In that case, the equivalence of limit cycles with
finite pulsed systems having a periodically varying sampl ing-rate
is observed, and the methods of analysis applied to the latter are
extended to obtain these limit cycles with the aid of final value
theorem.

This fundamental equation is modified and is simplified to
some extent under certain assumptions as it can be applied to
systems both with and without integrators. The limitation on
the longest period of saturated and unsaturated oscillation is in-
vestigated and the critical gain for their existence is derived,
starting from the modified fundamental equation. Also, the stability
of limit cycles as well as the equilibrium point is considered, based
on Neace's method and its modification.

Through this study, various kinds of non-linearities, namely,
pulse-width modulation, relay saturating amplifier with linear zone
and quantized level amplifier are discussed, and examples are
presented for each of these cases. Self-excited oscillations are
mainly examined, as well as the possible existence and stability of
limit cycles, however, the method can be extended to forced
oscillations.

Finally, experimental works are performed in order to verify
the theoretical results by means of digital computors.

-i.
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CHAPTER|

Introduction

Nonlinear sampled-data feedback control systems have been
extensively investigated in recent years (Fig. 1). One of the most
important topics of these studies has been the stability problem of
such nonlinear sampled-data systems. Lyapunov's second method
has been introduced as a powerful tool for the analysis of the stability

problems. 4,5,6

At the same time, the classical describing-function
method has been used in analogy with the case of nonlinear continuous
systems,

Amongthe various types of nonlinearities the pulse-width modu-
lation has been studied by such people as R. F. Neaaes, R. E.
A.ndeen?’lo E. Polak, n T. T. Kadota, 6 W. L. Nelson, 12 Shao Da
Chuan, '3 I v. Pyshkin, !4 and E. 1. Jury and T. Nishimural® % 3,

For example, R. E. Andeeng’ 10 presented an approximate method for
the analysis by replacing the pulse-width modulator by the equivalent
pulse-amplitude modulator. Hence, his method is restricted by the
small-signal condition because of that approximation. On the other
hand, Shao Da Chuan13 gave an exact analysis of the limit cycle in the
PWM system using the canonical-form expression. However, his
analysis is limited to the limit cycle of two sampling periods. 1. V.
Pyshkin14 presented an extensive method to prove the existence of
limit cycles in PWM systems, but still he had to resort to certain
approximation using the low-pass characteristics of the linear plant
and the stability problem was not substantially attacked.

T.T. Kadota6 applied the second method of Lyapunov for the
stability discussion and succeeded in deriving a sufficient condition for
asymptotic stability in the large of PWM systems, although his condition
was rather conservative compared with the actual stability condition
obtained experimentally.

E.I. Jury and T. Nishimural' 2,3 derived a method to find the
exact behavior of limit cycles in PWM systems extending the theory
of the periodically-varying finitespulse-width systems. Also, they

discussed certain features of the stability of such systems in connection
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with the stability of limit cycles when they are in the simplest form,
namely, of the two sampling periods.

In this report, the method introduced in the above references
is extended and simplified in its form. Hence, this report is in

(1)

that report will be summarized in the last part of this introduction,

direct continuation with the previous one and further detail of

The main subject of this report 1s the stability problem of
PWM sampled-data systems. By the Lyapunov-function method one
attempts to find the Lyapunov function which is positive definite and
is decreasing for every sampling instant. In order to find such a
general function one has to expect the worst case might happen,
without paying attention to the various features of disturbances within
the system. This fact leads to the result that the sufficient condition
derived by this method is often excessively conservative, as is seen
in the case of Ref. 6.

In contrast to such a comprehensive, macroscopic method, we
adopt the microscopic method in which we start by separating the
possible modes of oscillation into the adequate categories, then
analyze the stability of oscillations of each category from its simplest
mode and forward the analysis until we cover all the possible modes
of oscillations.

This laborious work may appear almost prohibitive in its
beginning. However, by finding the certain regularities which govern
such oscillations, we can achieve the precise analysis of the stability
problem. This is the basic attitude of this report towards the
specified problem.

In Chapter 1l the simplified form which yields the feature of
limit cycles will be derived and this equation will be extended to include
the system which contains pure integrators.

In Chapter 1II we will derive the n.ethod to find the longest period
of limit cycle of relay mode oscillation. Then we will discuss the
stability boundary for the relay mode oscillation. The same technique
will be extended to unsaturated oscillation as well as to other nonlinear
systems.

In Chapter IV the stability of the equilibrium point will be in-
vestigated and final conclusions will be derived on the stability of the
PWM sampled-data systems,



Review of the Previous Reportl

We present a short review about the content of the previous report
entitled ""On the Periodic Modes of Oscillations in Pulse-Width Modulat-
ed Systems“1 and reproduce those equations which will be used in this
report, The scheme of the PWM system is shown in Fig. 2. The PWM
controller (lead type) has such characteristics that its output is a unit
pulse (positive or negativc), the sign of the pulse is identical with the
sign of the control error at the sampling instant (en(O)) and the pulse
width is proportional to the magnitude of en(O).

Since the sampling period T is fixed, the maximum pulse width
is T and the saturation will occur beyond this point. Then the output
of the PWM controller during the (n+l)th sampling period will be given
by the product of the sign function y(n) and the unit pulse function uh(t).
The origin of the time axis t is placed at the nth sampling instant.

epnit) = v(nu (t) (1.1)

where
e (0}

¥(n) *Te10TT (1. 2)
n

and this takes only +1 or -1,

(t) =1 for 0 <t<h
“n - - n (1. 3)

=0 elsewhere
Also the pulse width is given as follows:

h
n

ale_(0)] for0<a|e (0)<T
" - (1. 4)

= T for a |en(0)| >T

where a i a gain of the PWM controller. The incremental response
ACn(s) is defined as the product of the transfer function KG(8) and the
Laplace transform form of the pulsed output e;‘h(t) from the PWM

controller

ACn(s) = KG(S)E;‘h(s) (1. 5)
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where -h s

>

Ep(8) = Llet (t)] = yin) =2 (1. 6)

Then the incremental response of each limit cycle is given by the
summation of ACn(s) during one limit cycle, multiplied by the relative

delay factor

M-1
AC () = z ACl(s)e'lsT (1. 7)
1=0
The z-transform of this becomes
M-1
ACHz) = 2 2"t ach(2) (1. 8)
£=0

Applying the skip-samplingm operation to AC:(z) yields the incremental

response at the instants 0, T 2T ..., where T = MT, the period

G’ G’ G

of the limit cycle:

ACE(2) = ZB[AC:(z)] (1. 9)

Then it is shown that the response at the beginning of the limit cycle is
obtained by adding AC:(Z) for all the periods of limit cycles and by
applying the final value t:heorem17 to the summation. In this case, it

is assumed that KG(s) has no integrator in order to insure the convergence
of limiting process.

Thus the final result is derived as follows:

c,_ =lim AC% (2)
Os Zal 6!
M-1
. -1
=1lim 2 z z [ KG(s)E', (8)] (1. 10)
zs1 ‘s 7 th

This equation can be applied for any type of nonlinearities. In the case
of the PWM system, Eih(') in the above equation is replaced by Eq. (1. 6).



Ex. (1.10) can be extended in general form to give the response at the
jth sampling instant of the limit cycle,

c.. = lim AC;'(Z)

* 291
- M-l
= lim z2_ ¢ 2 2 ! [KG(s E', (8)] (1.11)
Z31 s & th
since Ac;‘. *2) = 2 _[2) aC# (2)] (1.12)

When KG(s) has an integrator, the problem is solved with the aid of

difference equations,

Using these equations, the limiting cycle of M = 2 and M = 4 are
analyzed in the examples of the previous report:l and the existence of
limit cycles of the PWM mode and the relay mode as well as the stable
region is indicated. Also the critical gains for each region are specified
for the limit cycle of M = 2.

In the appendix, the stability of the limit cycle is discussed, which
is another important problem of the limit cycle as much as its existence.
The discussion is based on the important theorems given by Nease, 8
The definition of the stable limit cycle is given as follows.

DEFINITION: A limit cycle is said to be absolutely stable if any
small perturbation about the limit cycle approaches 0 as n = oo.

Then two theorems are referred to which present the method for
testing the stability of limit cycles.

THEOREM 3. Assume that the nonlinear difference equations

xml] = F(xn)] (1.13)

have a periodic solutions Sn] of period M, and that the functions F(X )
are single valued and possess continuous first partial derivatives. The
first approximation of the difference equation for small perturbations

about this periodic solution Sn] is

Yn“] =[A )Y ] (1. 14)



and the solution of this equation determines the stability of the periodic
solutions Sn] if [An] is nonsingular at all of the solution points, In the
above equation Yn] is the perturbation about Sn] and the components of

[An] are

aij‘ n= aFi(Xn)/axj

X, = Sn (1.15)
THEOREM 4. The system of Eq. (1.12) is stable if all the eigen-

values of the matrix
[Ag) = TAn A o) A (1.16)

lie inside the unit circle. Then all the solutions tend to 0 as n becomes

large.

Theorem 4 of Ref. 8 is partially stated in the above, considering
only the necessary part pertinent to this discussion. Combining these
two theorems, the condition for the stability of limit cycles will be
reduced to the following statement that "all the eigenvalues of the
matrix [AG] which consist of the first partial derivatives of
F(Xn) lie inside the unit circle at all the periodic solution points
Sn]. ' With this condition satisfied, the small perturbation will tend
to 0 as n - o, hence the limit cycle is said to be stable according

to the definition of previously defined stability of limit cycles.



CHAPTER 1l

Modification of Fundamental Equation for Limit Cycles

The general form of the equations which give the response at the jth
sampling instant of the limit éyelo in the nonlinear sampled-data system has
been derived in Eq. (i.11¥. It is assumed that KG(s) has no poles at the origin.

Certain modification of Eq. (i.11/) is attempted in the following part.
Since the content of the skip-sampling operator Z [ )is afunction of s, i.e.,
a sampled function with the period T, the operator Z . samples the sampled
function of T with the period TG = MT. Heance this sampling process is redun-
dant and the first sampling process with period T may be removed. For that
purpose, the content of the 2. operator, i.e., AC’ (z) shall be modified
in such a way that ACJ (s) containl the incremental response of one period
of limit cycle preceding the jth sampling instant. Hence, the new iacremental
response ACL(:) is described as follows.

-1
Ac:.(s) = E }[1«:&(-)1-:‘H l‘(-)] (21)
1=0
is0,1, ..., M-l,

It is understood that the system has already been on the 1limit cycle, hence E“‘ h(o)
has the periodical feature with the period TG' '

h(o) = E! whent +i > M (.222)

Ep i, 2+1-M, h(®

Substituting AC (l) for ACj (s) in Eq. (l.11') yields the desired response at the
ith sampling mlunt

¢, = Um 2z [ac] (s)]

ie Z —»1

M-1
. 1::” z, 120 ¥ IXGE; (0] (12.:31)

10,1, ..., Ml

Inverting the content of the Z_ operator to the function of s, and replacing the
skip sampling operator Z by the ordinary }opoutor with the period ‘P
the above equation becomu as Eq. (34 ), given below, where Z » .Mo



-1

is multiplied to the content of the bracket while Z " is mumblbd to the outside

of the bracket.

M-l
MsT 1T -1
(:i s lim T (O [ e KG(.’li+‘. h‘., z

-1
MPTka(p) i TRy ntP)

-l
10
"z BT '5- 1. o T0-P) o
s >0
i-o. l. 'oc.“.l ‘20‘)
MsT

The multiplication of e to the content of the bracket is done to ensure the
convergence of the integrand to sero aloag the infinite semicizrcle on the right-
half plane, and this does not cause any change in the final result uader the
condition that Z —» 1.

The limiting process s —» 0 may be performed before the integration if
the path of integration I' along the jw axis is taken sufficiently close to the

imaginary axis of the p-plane. Hence, Eq. (2.4 ) is reduced to

M-1
T ‘ -
M Kale) £ o Ty o P
1 LR dp (@.5+)
‘o = &Ky S 1.emPt il

r

This is the modified form of Eq. (2.1 ).

Further simplification is possible when the oscillation is symmetrical and
monotonic. The symmetrical oscillation is such that the same shape of oscilla-
tion is repeated for every half period of the limit cycle with an opposite sign.
The word monotenic in this case implies that the input oi .(t) to the noalinear
component is positive for the first half period of the 1imit cycle and is negative
for the other half period. These conditions are expressed mathematically
as follows: .

Letting M = 2 (4 = number of samples in half period of limit cycle)

10



F

o". = "iﬂs.l >0 fort=0,1, ..., pel (2.6)
and
Y“)-"‘ ‘0!’“0. l. e ey “.‘ - ..
(2.7 )
vit) = =} forte p, p+l, ..., M-l

The above assumption is justified in most of the cases in practice because the
linear plant usually possesses the low-pass clun‘ctoruttco. which render
the oscillations smooth aand monotonic.

Algo it is emphasised that the assumption of symmetry is placed on the
input of the linear plant, as in Eq. (2.6'), not on its output. Hence, the asym-
metrical oscillation with respect to the plant output, as observed in the second-
order relay system, (Fig. 9 of reference 1) is still the symmetrical oscillation

.with respect to the plant input and satisfies the condition of Eq ( 2. 6)

Since
Epspei,n(® = ~Epyy n(®) (2.8)

Eq. ( 2.5) is rewritten as follows

-1
«*PTxa(e) E AP o n(PNL - o HPT)

c =l 5’ 0 d

is =~ Ty , 1. e#PT P

PTxG() 2 T, P

1=0
- 27 S =G5 dp (2.9 )
r

Thus, half of the seros of the demominator of the mquud which {acludes the
sero at the origin, are cancelled by the seros of (| = o'“’ ) ia the numerator
by introducing the condition of symmetzry and monotemicity of

n



oscillations. +

bution for the analysis of systems with integrators which shall be developed

This elimination of the pole at the origin yields a great contri-

in the following part.
Equation (2.10) will be rewritten for the case when the function of the

nonlinear component is the pulse-width modulation. Then,
-sh

'
E),(s) = 1) ‘_'_‘T._ (2.11 )

where y(t) is specified by Eq. (1.2 , and

h, = cle‘(O)I

= a|r)(0) - c,(0)] (2.12

Substituting Eq. (2.1l ) into Eq. ( 2.10) yields

-1pT PRy, i

-1l
upT .
cur o [ ETME S e T gy
r + 1=0

So far, it is assumed that KG(s) has no integrator. The problem of KG(»s)

¢ The conditions of symmetry and monotonicity are the sufficient coanditions for
cancelling the pole at the origin of the integrand of Eq. (2.06), but are not the
necessary conditions. Actually, the condition of monotonicity is not required at

all in order to cancel the pole at the origin. Only the condition that every oih(O)

in one limit cycle have its pair of the same magnitude, but of opposite sign,

in the same limit cycle, is required for that purpose. In special cases, this condi-
tion is further reduced to that the summation of eih(O) is equal to sero, as in the
case of the quanitsed level amplifier.

For example, the four-period limit cycle of 1, k, -k,~1, | k| <1, which is
shown in the example of Ref. 19 for the saturating amplifier system, satisfied the
above condition.

However, this does not assure the existence of such limit cycle as shown
in the same reference in which the existence of the above limit cycle is denied.
Moreover, the stability of such asymmetrical, non-monotonic limit cycle is
quite dubious, as is noticed in the experimental observation. Therefore, the
introduction of the assumption of symmetry and monotonicity is practical when
the linear plant has the low-pass characteristics, as in most cases. Also, we
emphasise that this assumption does not introduce any approximation for the
analysis at all.

12



with integrators will be discussed in the following part.

An example of second-order system with a single integrater is sclved in
the previous section with the aid of difference equations. The reasonm for the
difference equations being used in addition to our fundamental equation is that
the pole at Z » 1 which originates from the single integrator of the plant makes the
application of the final value theorem impossible, since when Z approaches uanity
the term Ac:(z) would diverge because of the pole at Z -}. This fact can alse
be observed when we take a look at the modified equation (8,4 ).

When the integral is evaluated by the residue method for all the peles of
KG(p), the term | - e'““"p) causes the integrand te diverge whea the residue
at p = 0 is evaluated, and when s —> 0 and this does not give any finite value for
the residue.

However, if the condition of symmmetry and monotonicity is introduced to such
a system, this troublesome pole at the origin is eliminated as s —> 0 and the
evaluation of the residue at the origin becomes possible. This is seea in Kq.
(2.10) in which the pole at the origin of the integrand has already been removed.

. Therefore KG(p) may contain not only a single integrator, but also a
double or tru;lo or any higher order of integrator at the origin. Aad it is
proved that the -uhpumd equation (2.10) is valid for any sheape of the plant -
KG(s) if it satisfies the physically realisable coaditioa under the umpt,h. of
symmetrical and monotonic oscillation. Also, Eq. (2.10) is applicable fer any
type of nonlinearities if the output o;‘h(t) of noalinear element can be specified
as a function of the input and output of the over-all system.

We have derived three fundamental equations for limit cycles in this
chapter, as shown in Eqs. (1:}1}), (2.5), and (2.9). We will explain briefly
the advantage and disadvantage of using each of these equatioas.

The first equation of Eq. (1.11 ) has the disadvantage of haviag twe kinde
of s-transformation, namely, the s-transformation with respect te T and the
skip-sampling operation with respect to 'ra. However, in actual calculatien, we
can perform the skip sampling operation by picking up the necessary tarms out
of the expansion in powers of s". without carrying over the iategration of sampl-

[ISg opeioiien:, . Mozmowss, rweaie forced to i 4. (L. H) when the system
" AN AL ot dalrix dnits' which | Fre giyed &8 s function of 2, not of s.

13



The second equation of Eq. (2.5 ) may be used in most cases except
when the system has digital processing units. However, we must be careful
in carrying over the integration because the integrand contains the delay factors
in the form of e PT and more labor is required for the computation.

The third equation of Eq. (2. 9) is useful when the oscillation is symmetric
and monotonic, and is the most convenient form among these fundamental
equations. When these assumptions are violated, as ebserved in the examples
of the quanitsed level amplifier of Section 2.2, (3), we have to0 use either
Eq. {1.11') or Eq. (2.5 ). '

When the plant has an integrator, Eq. (2.5 or Eq. (2.9') can be used,
although they give only the oscillations of sero D. C. component. * In case the
oscillation of non-zero D. C. component is desired or the values of derivatives of
responses are required, the difference equations are very helpful as shown in

section V of reference 1.

Example 2.1

The equations which yield the solution for this symmetrical PWM mode
oscillation are {liustrated in this exampls.

The plant is chosen as second order and the period of the 1limit cycle is
M = 2u sampling periods.

KG(8) = 3§y (2.14)

In Eq. (2.13), let i = 0 and take y(2+i) = y(0) = +1 for all £, referring to
Eq. (2. 7). Hence Eq. (2.13) becomes as follows.

* b.c. component implies the average value of responses at the sampling

instants during one period of limit cycle.

14



) -1 -h,p
Lol _MPT g i (1-e f)etPT
“0s z=r3r 1+ #FT FpFE) I

P
1=0
bh bh,
I T N O W L e T
lJ b(l + e P°%) T bl + e™°%)

-1
+ —5— —-11—’-1-5-,'-1-’-} (2.15)

b(l+e

Multiplying - a to both sides of the above equation and knowing ho = -ac,.,
the following equation is derived:

bh

-1
h -(u-2)bT, 0
oK t _ e (e -1)
hy = =% 15'0 { 2 L+ eBT, ] (2.16°)

For i s 1, it is observed from Eq. ( 2- 7) that

v{t+1l) = 41 fort = 0,1, ...,p=2
z -1 fort = p-1 (Z.l?)
and
h“ = h‘o
Hence, hl(- -a cu) is obtained in a similar manner
-2 bh
- 2515 2 Bpyr  leetIBT R4,
Z b(l + e'”ﬂ)
1=0
bh
- [ho - Sﬁi‘—-:‘rn- (2.18)
T b1+ «PPT) .
In general,
1 1 f o by coh, pole
vit+t) = + ort=0,1 pelei (2.19)
s -l for £ = pei, p=i+l, ..., pe-l

15



and

B oisi ® By

Then, using these results

-1e1 »
Y '2 ["m b-tRT, '*‘-u]
LIS V-7 A bl + ¢ P0T)

el ‘
E [nm T M T ] ] (2. 20
- % - ' * . o
Qopei ol ée "j

i=0,1 ..., p-t

The solutions of the equations which are given by Eq. (2. 20)fer i 0, 1, ... p-l
yield the exact feature of the PWM mode oscillation that will be sustained

within the closed-loop PWM sampled-data system. Although the aumerical
solutions of these transcendental equations are not easily obtained whenp > 2,
certain approximations for the exponential terms are pessible, as discussed ia
the previous section. Also the programming on the high-speed digital eemputer
will enable us to solve these equations without appreximation whea the system
constant, the sampling period, and the system gains are specified.

16



Example 2,2 Quantized Level Amplifier

In this example, the ncalinear gain amplifier has a characteristic
of quantised level (2 levels) as showa in Fig. (3).
This characteristic is representsd as follows.

c;(t) s 1 i 4« c‘(O)
s 0.5 if d/2 < c.(O) < d
= 0 if -d/2.< o (0) < d/2 (2.21)
«<05 i -d < on(O) < -d/2
= el i o.(O) < -d

where ads i
The linear plaat is again second order given by Eq. (2.14).
We will demonstrate the existence of asymmaetrical oscillation with the
period of three sampling periods.
For such aa asymmetrical oscillation, Eq. (2.5 ) must be used.
Letting M « 3, and it is assumed that the output of the Aonlinear component has
a sequence of +1, 0, -1, hence y(0) = 1, y(2) = 1. Substituting these values
into Eq. (2.5 ), together with Eq. (2.21 ), yields

« 30T
KilaT 1-¢
. . - 2. 22
€os s[‘r PRD L ..m';] ( )
-bT
} l-e
» - 2. 23
= PR [3 b1+ ot s o BT, ] ( )
«bT «2bT
K F’ [ -e
¢ . - 2. 24
28 ‘ ’ Nl + .-‘T + .-!“) ] ( )

* The stability of this limit cycle is tested by the method which is
described in Chapter I' as well as by the digital computor experiment.
It is found that this limit cycle is unstable and will move to the relay mode
oscillation of M = 4.

17
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When T =2, bal, Kslandd=1/3 (a=3), those values are calculated
as follows.

Co. = - 0.4“2

c = -0.083

1s

Ce * 0. 565

The output of the quantised level amplifier corresponding to o8 s+, 0

for c -1 for Sy which satis{y the original assumption of the sequence.

This 1.uymmetrical limit cycle is shown in Fig. (4).

Another example of an asymmetrical limit cycle will be demonstrated
for the same system as the previous example, except that d = 1/2 (as2)
in this case. The sequence of the output from the nonlinear component is
assumed as +1, 0, -1/2, 0, 1/2, 0, -1, having seven samples in one period
of limit cycle.

Again Eq. (2.5 ) is used for the analysis of such asymmetrical
oscillation. For example, the response at the first sampling instant of the

limit cycle is given by

-b'r -Zb'l' «4bT «6bT
K|S 1 - !ﬁz + e - 2 }
c = - T -
os b [7 2b(1 - ]
= -0.57 ¢2.25)

Similarly, the responses at the other sampling instants of the 1imit cycle
are obtained as follows.

= -0.178 c

¢ 28

= 0.470 = «0.011

1s c30

< s 0,37 c s 0.147 c6. = 0.514

4s 59

Applying these values of responses to Eq. (2.21 ) (letting o‘(O) .- cn“” )
we find that the assumed sequence will be reproduced from the aenlinear
gain amplifier and such a limit cycle will be maintained. The feature of
this limit cycle is shown in Fig. (5). These two limit cycles are proved to
be stable limit cycles by the digital computor experiment.

19



1
C
ASYMMETRICAL LIMIT
CYCLE OF M=13
C, l
, -
1
C
0 A
| _ _
KG(s)= S(S41) T=2 =3
en s +l, 0, -l

FIG. 4 ASYMMETRICAL LIMIT CYCLE OF QUANTIZED
LEVEL AMPLIFIER SYSTEM

20



ASYMMETRICAL LIMIT
CYCLE OF M=7

—._._.._'__.._ = =
KG(S)= gy T2 =2

ey ; +1,0,-05,0,+05,0, -1

FIG. 5 ASYMMETRICAL LIMIT CYCLE OF QUANTIZED
LEVEL AMPLIFIER SYSTEM

2l



CHAPTER 111

ANALYSIS OF SATURATED AND UNSATURATED OSCILLATIONS
AND THEIR STABILITY BOUNDARIES

In the previous chapter, we have derived a fundamental equation te
trace the exact behavior of limit cycles which are sustained within the
nonlinear sampled-data systems. We have also demenstrated that such
oscillations can be eliminated by reducing the gain in PWMM syetems when
they are in the simplest mode. However, the problem of finding the gain
boundary to eliminate all the possible limit cycles rédquires an enormous amount
of work.

But we will proceed to solve the stability problem in this chapter by
the localised approach to saturated and unsaturated oscillaticas in PWM
systems.

3.1 Limitation on the Period of Limit Cycles of Relay Mods Oscillations

It has been observed that there exists a certain limitation oa the
longest period for the limit cycle which is sustained withim the autonsmous
relay sampled-data system. I[sawa and Wuvorzo diecussed this problem
on the second-order system and derived an equatioa which gives the maxi-
mum half period of limit cycle as a function of the sampling peried, iatro-
ducing a fictitious delay to the sampler. Also Pyohhln“ treated the same
problem using the demcribing-function metkod.

We will show that this problem can be solved for any order of the
linear plant without any approximation. Uader the assumption of symmetric
and monotonic oscillation at the output of the nonlinear compoment, which
is an ideal relay in this case, Eq. (2.13) is valid for the relay mode oscillatioa
if all h‘ +i 8T replaced by the sampling peried T. Hence

)
pT -1pT -pT
R Rt S e E
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It is to be recalled that the output of the nealinesr element oi '(0) {s

positive for the first half period and aegative for the cther half period.

This implies that the response ¢, o(0) 18 negative for the firet half peripd
and positive for the other half if the nonlinear cemponent such as nlq"
PWM, or saturating amplifier has o hysteresis in it (no input is assumed).
Therefore,

y(it) = +1 fort =0,1, ...,p=1
(3. 2)
. | forfd e p, pel, ..., M-l
and
c..(O fort=0,1, ..., pel
(3. 3)
c‘.>0 ford= p, ptl, ..., M-l

Then the maximum aumber Bmax of sampling periods in the half pericd of
1imit cycle is easily obtained by investigating the polarity of c“_‘. s .
which is the response at the last sampling instant contained in the firet half
period of the limit cycle, and {s givea by Eq. (3.1), letting { = u-1in it,

pT . o PT
e - o § TR S 0= S e
=0 (3.")
Since c,_ is negative by the original assumption, the polarity of ¢ el 8
is tested starting from p = 2, i.e., from 1e° wel, .myln
negative up to a certain p = y', but may become poclun for all p > .;'41
In that case this critical ' is taken as Kmax’ since c”.l. . must be
negative by the original assumption, and wheaever this assumption is
violated we may conclude that such 1imit cycle with the half period pT
cannot be sustained ia that system.

Thie conclusien will be illustrated for first-order and second-opder
plante in Examples 3.1 and 3. 2.

E le 3.1
When the plast transfer functiom i firet order, given by
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KG(s) = 51t (3.5)

The response Cucl, s at the margin of the first half wave is similarly
' Cuel,

obtained. Letting i = p-1in Eq. (2.19)

(L+p) = ¢+ ford =0
Y (3. 6)
s ol fort =1, 2, ..., p-!
and
Cor Spo o0 1.:"_l <0

Hence Eq. (3. 4) becomes

2=}
-bT
- % :%B‘rl[ 14627, | 4 e h-2bT -e.(“."b‘r] (3.8)

It is clearly observed that c“_l. . is positive for all p > 2, violating the
original assumption of Eq. (3. 7). Therefore it is concluded that the first-
order relay sampled-data system can maintain only the relay mode oscillation
of two sampling periods (4 = 1) and that the longer period oscillation cannot

be sustained in that system. The above statement is true for any plant gain

K, plant- time-constant b, and sampling period T.

Example 3. 2
Next the case of the second-order system with an integrator will
be discussed. The plant transfer-function is given by Eq. (2.19).

Then, letting all h‘ +4 > T in Eq. (2.15) of Example 2. ] yields a

set of solutions co, ¢, ., ..., Cu-1, 8 for the responses at all sampling
instants.
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N
K E T o(-t-1BT _ -bT)
is ) { [! ol + .-.}S'F

)

1s0
o]
“-2-1}pT, _ _-bT
3 [%' - e ’]] (3.9)
fopei bl + e )

Forpslandispu-1s0

-bT : «bT -bT

._K'l'. 1-e ._x‘b‘r(l+o Yl oo )

“os s[’ Nln'“)] nt 1+T’h

(3.10)

It can be easily proved that the numerator inside the bracket is poesitive for
all bT —> 0. Hence it has been shown that €os is negative for all T.
Then forp = 2and { sp-1sl

-bT,2
K (l-e
Cl. . - ;!- Lﬂ*—- < 0 (3. ll)

1+e

Therefore, s is negative for any sampling period T.
Next forp = 3and i s p-1= 2 in Eq. (3.9)

bT

Crp ® % [; - JL‘..‘...“.}. 1+ T . e'zb.r)] (3.12)

i + e )

Simple trial will show that €y is negative for small T, but when T becomes
larger c 2s will become positive, violating the original assumption. Thus
we can {ind a certain critical 'I'c bu spiving Eq. (3.12) for T when 2 is
equated to sero. Then the oscillation of p = 3 or M s & can exist for
T < Tc but it camnot be sustained for T > ‘l'c.

A similar phenomenon is observed for larger u. Here we may derive
an equation which yields the relatien betweea the maximum u and the

sampling period T. Letting i = p-l in Eq. (3. 9),
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c“ -1, 8

«(p-1)bT «bT
. - KT o ‘(l-e )
5 { bl + e POT)

) E—“ [?z ,-(»iz.m%k ,-bT) ]}

I=l b(l+0."' )
bT
S % SN i B e +‘b‘l‘_l} (3.13)
?{T(ﬂ P-e l+e°""”

By the original assumption, c < 0. Hence BPmax 10 obtained by

nel, o
finding the maximum p which satisfies the following inequality
-ubT
bT BT 1-e* bT
=-2)-e - + e -1 <0 (3.14)
7z 1+ ¥

Thus we are led to the following interesting conclusion, that the limit cycle
of two sampling periods and four sampling periods can exist in the relay
sampled-data system for any sampling period T, but that for p > 3 the
maximum aumber of sampling periods which can be contained in one limit
cycle is restricted by certain conditions that are specified by the system
constant b and sampling period T, as shown in Eq. (3.14).
function of the sampling period T is plotted on Fig. {g).

The discussion and conclusion so far can directly be applied to the
relay mode (saturated) oscillation in PWM systems. The fact that there
exists a limit on the period of the limit cycle for the relay mode oscillation
must be remembered and this will be very useful in stability discussion of
PWM systems that will be given later,

Pmax %2

3.2 Gain Boundary of Relay Mode Oscillations in PWM Systems

It is observed in Section IV of reference 1 that the oscillation
will be shifted from the PWM mode oscillation to the relay mode
oscillation when the over-all gain aK is increased, because of the
saturating characteristics of pulse width modulator. The critical
gain between these two. ‘modes is denoted as aK. and is obtained for
the limit cycle of two sampling periods in Section IV of reference 1.
It is not a difficult problem to obtain the critical gain for longer periods,
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since we have already derived the general equation for the PWM mede
oscillation in the previous section: The tramsition will occur when all

pulses h1 of each sampling period reach saturation aad fill every sampling
period of limit cycle. However, we have derived the squatioa of cgd88
function of a K in Eq. (2.13) and we know for the autonemeus system that

hi = -ac,, 1i=20,1, ..., p-l (3.15)

when the psriod of the limit cycle is chosen as 2uT. Then the critical
gain a K_ is given as such a gain that every h1 becomes simultaneously
equal to T on both sides of Eq. (2,13); thus the sum of h‘ for the half period
becomes equal to the half period uT.

Combining Eqs. (2,13) and (3.15) and letting h‘-—-—a T yielde

o} -]
pT = 1lim h1 = lim “a 2 e

i=0
-1
X el .D‘PTO‘” ‘N Y“tn..‘P.ru . ."T’
ol : 1=0
4
o] is0 T (“_.up!'rp 1‘-‘ P
a K 0 o
d
il ‘l'g: Q1+ G"ﬂ)p P

Taking out the termg under the double summation inside the brackst of the
integrand and denoting this as f(i, pT), we have

o1 yel
s, pT) = - Yt +1)el vl -10pT
=0 1s0
-1 -1
. - 2 olpot-1)pT i yit +) (3.17)
10 1a0
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Actual values of yif+i) are given by Eq. (2.19). Substituting their values
into the above yleids the general form of f(u, pT) as follows

0, PT) = po2+ (- 41PT 4 (o 6)e®PT o o . g)el-2IPT

- peli-tlpT (3.18)

Denoting the gain which satisfies Eq. (3.15) a» e K () it is given by

oK () » —p L (3.19)
T S 1 - Q“P flu, pT dp
r p{l + o )

It must be pointed out that the assumption of the simultaneous
saturation of the pulse width hi is not practical except when j =1, since
the wave shape of the response may become somewhat 1ike a sine wave,
but may not appear like a square wave. Therefors most of a | <, .l becomes
larger than T when all the pulse widths are saturated, 8o the left hand side
of Eq. (3.16) may be larger than uT. '

Hence, .x.w which is derived from Eq. (3.16) must be gegarded
as the lowest gain that might allow the existence of the specified saturated
oscillation; it gives the sufficieat condition for the non-existence of the
specified saturated oscillation. Also it may be regarded as the critical
gain when the square wave assumption is introduced as explained later, then
it gives approximately the gain when the avergge of a | c“I is equal to T.
The above equation, Eq. (3.19), shall be applied for the cases of the first-
and second-order systems in Examples 3.3 and 3. 4.

Example 3. 3

In the first place, when the transfer function of the plant is the firat
order, given by Eq. (3.5), and when p =1, _nl(. is casily calculated as
follows:

fp, PT) = -1 forp =1 (3. 20)
Hence, by Eq. (3.19)
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-bT
oK, = p'r «bT 118 (3. 21)
1 S l. e -] dp l1-6e
v A "+ eﬁ)p XA
Example 3. 4

When the plant is second order, given by Eq. ( 2,14), the integral
of Eq. (3. 19) is firet evaluated as follows

!l-e l‘EIE! dp
IS 1+e p (p+b)

- = {bu'r ‘ i‘ X _m.&u"” } (3. 22)

where (i, -bT) is obtained by substituting -bT for p in Eq.(3.18). Substituting
this into Eq. (3.19) yields nK. as a function of p:

2 -ubT
2buT( + ™0y
aK (u) = 3,23

¢ buT(1 + e""ﬁ) + 20 - e'bf) f (s, -bT) ( )

nl(. is actually calculated for u =1, 2, 3, 4 as follows

sk Al) = 2’11 4 °PT)

3. 24
bT( + e TiT-zu-e'“) (3. 24)

oKy (2) » b (3. 25)

Tl + e )-e (l1-e )

2 -3bT
b T{l + e )
K(3) = %J BT ﬂ :!s-r— .
*Te IBT(L+e " )+ 2(1-0"""N1 - (3.26)

-4bT
ab’T(1 + ¢
aK (4) = m— 3“—- 3. 26
¢ 26T + e ®T) , o1 - ¢ OT)q - ) (3. 26a)
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It was found in the previous section that a limit exists for the longest
period of the relay modec oscillation in the PWM system as well as in the
relay system.

When this restriction is combined with the results about the critical
gein for the relay mode oscillation we reach an important conclusion con~
cerning the stability boundary of the relay mode oscillation.

Since we know how to find Fmax for the relay mode oscillation and
also the boundary gain corresponding to each 4, we caa find out the lowest
gaia for any relay mode oscillation by inspecting every o!{. as a function of
B, Where p ranges from ltop . . We may coaclude that ao relay mode
oscillation can exist below that gain, since we have covered all the possible
taodes of relay oscillation.

This lowest gain min(a K.) is the stability boundary with respect
to the relay mode osciilation, and it is clearly a sufficient condition for
the non-existence of that type of oscillation.

This derivation of the stability boundary for the relay mode oscillation
shall be illustrated on the first-order and second-order plants in the
following part.

In case of the first-order plant, it has beea Shown that only the limit
cycle of two sampling periods, % e., p =1, can exist, and we derived the
critical gain a K. for this mode in Eq. (3. 21). Hence this cl(. is the
stability boundary for the relay mode oscillation. When the gain is lower
than this a K the system is stable as far as the relay mode oscillation
is concerned. However, it is pointed out in Chapter II that this cK. exactly
coincides with the absolute stability boundary derived by mm’ using
Lyapunov's second method.

Therefore, the question wili arise whether we may take the gain
boundary for relay made oscillation as the absolute stability boundary
or not, and if the answer is affirmative, how we can justify it. This question
will be answered in the following part.

Next, the second-order plant will by discussed. Ia this case, the
problem u' not so eimeple as in the first-order system, since we found that

k)|



the limit cycles of two and four sampling periods always exist for any T

and the longer period oscillation can exist when T becomes shorter. However,
we can prove fortunately that oK.(u) is the monotonically decreasing

function of 4, hence the lowest gain boundary can be obtained only by calculating
a K. for P max which is specified by Eq. (3.14) for a given T. The proof of

the decreasing characteristic of o.K. is given in Appendix B. Thus, the

steps to follow in finding the stability boundary are first, find *max by
Eq. (3.14) for a specified T, then find aK. corresponding to this K max
Eq. (3. 24); ultimately this o K' (pm“) is the stability boundary for the
relay mode oscillation for that T. The curve of this boundary is plotted

by

in Fig. 7.
3.3 Gain Boundary of Unsaturated Oscillations

In the previous sections, we have derived the sufficient condition for
non-existence of relay (saturated) mode oscillation. Extension :of the same
technique to the unsaturated oscillaticn is attempted in this section. The
problem is not so simple in this case because the pulse width may take any
value between sero and T and is not fixed at T as in the saturated oscillation.
The derivation of the equation which gives the longest period for the unsatu-
rated oscillation as well as the equation which yields the boundary gain for
such oscillation may become prohibitively complicated, since each pulse
width at each sampling instant differs from the other and they cannot be
easily calculated.

However, by introducing the sine wave approximation or square wave
approximation we can eliminate such complexity to some extent and can
follow almost the same steps as in the case of saturated oscillations to reach
the gain boundary of unsaturated oscillation.

We consider the square wave approximation in which we assume that
the pulse widths are conetant and are equal to h, which may be considered
as the average value of pulse widthe during one period of 1imit cycle.

In that case, letting

By, = B
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in Eq. (2, 13) yields

.( ____.FL 2 yiteu-1)a”tPTap  (3.27)
r l+ c

Then, we can findp which gives the longest period admitted for the
unsaturated oscillation by testing the polarity of c 1,8 and using Pmex
The gain boundary is given as follows by moduytng Eq. (3.19).

h
a ’ ) = ﬁl‘rﬂ—'ﬁ

T

3.2
pl1+e*P") (328

The applications of these two equations shall be {llustrated on the first order
and second order systems.

Example 3,5

In case of the first order system, the equatioa to give 1:”_l . becomes,
L

K. 5T h)!,,, ) [ 14 BT o pa 2T -te-libT

[ =
kel.e lee®

(3. 29)

Observing Eq. (3. 29), the same conclusion {s derived as in the saturated
oscillation that the longest period of the unsaturated oscillation is 2T, and
the oscillation of u > 2 cannot be sustained in the first order system with
the square wave approximation.

Hence we ﬂnd, for unsaturated oscillation, that

Mmax ® !

The corresponding gain can be easily calculated frem Eq. (3. 28) as follows
bT

oK (h) = bh-l-"-&—-i- « oK, (3.30)
e -
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This coincides with the critical gain of the PWM oscillation as derived iv the

Section IV of reference 1

Example 3. 6

The second order system s discussed. Under the square wave
assumptioa, the squation for Cu-l, 8 is easily derived from Eq. (3. 27) as

follows
bh ubT
K (bh e -} l-6@ bh
= «2) - . + 0 1], k)|
bl ® 2 [z o 1607 14eP07 ] (.3

Then the maximum number of samples which caa be contained i cae half
of the period of limit cycle of unsaturated escillation is obtained by finding
the maximum p which satisfies the folluwing imequality

bh . a"#bT
h‘?“l"z)‘:. ._s‘T' :+%r§ Ou-l <0 (3. 32)

Then pm“(h) are calculated as a function of T and'h. In Appeandix C, the
proof is givea to show that P max for an uasaturated escillation is always
equal to or smaller thanp of saturated oscillation.

Fmax®) €bentT) (3. 33)

Thie relation will be very useful for the analysis of unsaturated oscillation
as well as for the derivation of the gain boundary of such oscillations. The
gain boundary of the unsaturated oscillation is given by o K (h) of Eq. (3. 28)
whea 1 takes the value of “w‘h’ ebtained abeve. Thus

K (,b) = zbz%‘%..“t‘r (3.34)
ph(i+e }+2e " (e TelMlp, <bT)
where p = "mu‘u obtained from Eq. (3. §2).
The values of cl(.(h) are calculated for varieus h and T and showh ia
Fig. (8). It is moticed that a K (k) is very close to o K_(T) or slightly
above .x.m. a8 seen from the same figuve.
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It can be observed by comparing Eq. (B.1) and (B. 7) of Appendix B
that ex.(u. T) is smaller than .x.o..h) a8 long as D{u) is positive.

oK@, T) £ aK,(uh)
(3. 35)
D) >0
Then using the relation of Eq. (C. 1) that has been proved in Appeadix C, the
following relation can be derived.

oK o Th TISeKu (), TISaK ko ) D) (3.36)

for D{n) > 0

Diu) is positive for bT <19
Therefore a K .(..w('r). T) is the lowest gain boundary for the existence of
saturated and unsaturated oscillation.
When bT >1.9, D{p) € 0
hence,

aKyu, T) 2 oK, (u,b)

And the smallest of a K.bt.h) is obtained by letting h = 0 in Eq. (3. 34).
Eventually it is reduced to 2b. Therefore a K = 2b yields the lowest gain
boundary for bT >1.9. Combination of these two boundary curves presents
the sufficient condition for non-existence of saturated and unsaturated
oscillation of PWM systems. This is plotted in Fig. ( 8) and we can observe
that it is very close to the experimental data obtained by IBM 704. We
mentioned that the pulse width of square wave approximation can be regarded
as the average value of the pulse width'during one period of limit cycle.
However, anSther approach to this problém i{s possible and it is explained

in the following. When we find the maximum pulse-width hmn amd minimum
pulse-width boin during ome period of limit cycle, we can calculate the
corresponding o Ky ey 80d e K.(hmu).

The actual gaia boundary corresponding to the actual wave shape
must lie in-betweea these two gains, But, we know fhat P max 18 88 increasing
function of h and @ K.ﬂ. h) is an decreasing fuactien of u a0 well as of h.
Therefore
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P max (hmax) > “mu‘hmm)

and

aK (b, by ) < aK (s, Boin)
GK.(NI. h) < QK.(PZO h)
for R P and D(u)> 0

Combining these properties we may conclude that cl(. correspoading to h-“
is smaller than the one corresponding to hmh for bT < 1.9. Heace we take
a K.(h m “) as the lowest gain for the existence of the unsaturated oscillation
of which maximum pulse-width is hm ax’ Actual gain must be above this
value, When bT > 1.9, we take a K = 2b as tae lowest gain.

3.4 Extension of Theories to Other Types of Nonlinearities.

The noticeable result which has been derived in this chapter is that
the method to obtainp and the corresponding a K can be extended to
other types of nonlinearities.

Whether the nonlinearity is a saturating amplifier with linear region
or a quantised level amplifier does not matter, provided that they have &
complete saturation as showa ia £ig. 3. We can extend our theories to the
analysis of such systems ‘

The limitation on the longest period of limit cycles for such nonlinear
systems is exactly identical with the one for the PWM system, because they
will behave just like a relay system when the escillation remains in the
completely saturated region. Therefore, the equation to find Pmax’ given by
Eq. (3. 8) and Eq. (3.14), is valid without any change for the nonlinearities
which have the completely saturated region.

We need a slight modification on the equation that gives the gain
boundary of saturated mode oscillation.

Let a be the tangent of the inclination of the line which combines the
origin and the edge of the saturated region. Then, as far as the saturated
region is concerned, we have the following input-output relations of acalinear
com ponent,
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e;‘(t) =z 1 l<aon(0)
e;‘(t) = N [en(O)] if «1<a en(O) <1 (3. 37)
= -1 if a en(O) < -l

N [ ] in the above equation indicates the particular nonlinear amplitude-
depending-function which can be specified for each case of nonlinearities.

In case of such amplitude~-dependent nonlinear functions, Eq. (2.5)
or (2.9 ) can still be used to obtain the responses, and the output of the

nonlinear component E;\h(.) is given as follows.
1 - e-’r-
El'lh(') = N(en(O) ) ———g-—— (3. 3‘)

Substituting thie into Eq. (2. 68) yields

(0)) e 4PT( . -PT)

L #PT kot S‘ Nle,
Gty | T ; o
P

Lte 1=0

(3. 39)
When the oscillation is in the completely saturated mode, the nonlinear gain
factor given by N( ) will become equal to 1 or -1 as shown in Eq. (3. 37).
Hence, the equation which yields the responses at the sampling instants
becomes identical with the one for the PWM system given by Eq. (3.1).
However, because of the saturation, the input to the nonlinear component
during the first half period of the limit cycle becomes as follows.

~ac., >1 fori=0,1, ..., pel (3. 40)

Substituting Eq. (3. 39) into the above equation and obtaining its sum for it
from o to pu-l yields

{5



Hence the gain boundary for saturated mode oscillation becomes
pT
1 G(p)1 - ™ " )} T
oK, = gy S Slelt - o _Mlu, pT) 4p (3. 42)
' v p(1+e*P?)
r

It is easily observed by comparing the above equation with Eq. (3.19) for
PWM systems that o K . for amplitude~dependent nonlinearities caa be
obtained by multiplying 1/T to a K, for the PWM system,

This multiplied factor 1/T gives an inclining characteristic to aK_ as
shown in Fig. (0), different from the flat characteristic of cl(. for the
PWM system which is shown in Fig. (7). a K.(ﬂmu) for the saturating
gtin amplifier as well as for the quantized level amplifier are plotted in
Fig. (10) and (11). They give sufficiently close gain boundaries to the
experimental data on I[BM 704.
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CHAPTER 1V

Stability of the Equilibrium Point

It was shown in reference 8 that the stability of the 1imit cycle is
tested by examining the eigenvalues of the characteristic matrix, which
consists of the first partial derivatives of the variables. Also the equilibrium
point can be regarded as the limit cycle of oae sampling period.

The basic steps to test the stability of 1imit cycles which are givea
in reference 8 were presented in Chapter 1. The basic assumption
of this linearisation of the noalinear difference equatioa is that the pertur-
bation around the limit cycle or the equilibrium point is sufficiently small.
However, the actual limitation on the magnitude of the perturbation which
permits such apprpximation is not specified oxplicitly. We will indicate
that such approximation becomes valid by evaluating the error which is
brought about by linear approximation.

We will derive the total linearisation techaique for that purpose in
general form. It is known that the difference squations of the response and
its derivatives for linear sampled-data systems are written in the following

matrix form. a
C,ﬁ’, ] - [QU‘)] c(:’ ]+ Q‘{}.] J=0,1, ..., g1  (4.1)

where Q(i) consists of system constants and Q("_L represents the effect of

the input, and q is the order of the linear plant. Similar representation is
possible for nonlinear sampled-data systems, ueing a vector, x‘. for the
system variables and a noalinear vector N(x.) for the output from the noalinear
compouent.

x,m] = [Q] xn]nc(xn)] (4.2)
and it {s assumed that X, and X +1 is on the equilidrium point, ao. which
is the origin in most cases. Then if we let the components of the vector,
xn. be Xipr Bppe cv oo an. these x’. correspends to eg’ inkq. ( ¢.1)
Also the characteristic matrix Q] of the linsar plant corresponds to
1Q¥) K. (410

Letting Ya with its compoaent Yia' Yom ' ° ¢ y“ be the small
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disturbance of Xpr Eq. (4. 2) is rewritten when such disturbance Yn is
added to xn.

(X, + You)) = 1QUX + Y )]+ N(X, + Y¥))] (4.3)

n+l
or

X )+ Yoqle(Q1X ]+ (Q) Y, ]+ NIX + Y] (4.4)

However in most nonlinearities, the output of the nonlinear component is
only the function of input itself, and is not the function of its derivatives.

Therefore,
N(X,) = N{x; ) = Nl-c ) (4.5)

In that case, all the partial derivatives of N(xn) vanish when it is differentiated
by xjn for j 4 1. Hence N(Xn + Yn) can be expanded into powers of xn

by Taylor expansion

2
NGX, ¢ ) = NG ¢ R vy e g 25 Yot (4.6)
n .xln

where all the partial derivatives are evaluatedat X = SO' Denoting the

summation of all the terms as N'(Yln) except for the first term in the above
equation, it becomes

N(xn + Yn) = N(xn) + N'(ym) (4.7)

Substituting this into Eq. ( 4, 4) and using Eq. ( 4, 2') yields the difference
equation of the perturbation around the equilibrium point.

Then denoting the summation of all the terms as N"(yu) except for the
first two terms in Eq. (4.6 '), we have

N'(yln) = g‘f‘l'n YIn + N"wln) (4.9
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Substituting this into Eq. ( 4. 8) yielde

WENCERES -3

= |A] Y, ]+ Ny, )] (4.10)

Yin 1 M N"(’lnn

where the component in the first columa of A is the sum of "‘l.:“ and
the corresponding term in Q, and the ather components of tiwo matrices are
all identical.

ON,
L 'R
‘U'QU j=2, ..., 9Q (4.11)

It is observed that [An] given above is identical with [A_] of Eq. (1.14) in
the previous section. However, Kq. ( 4.10) has no approximation whereas
Eq. (i.14 is the first approximation of Lq. («4.40), neglecting noalinear
vector, N"(yh)]. For certain types of noalinearities it can be proved
that N"(Yn) is finite inside certain regiom S, which is a vector space of ¥ '
In other words, we can find such R‘ and R(with their components

Rh and R‘. respectively) that
N"'(y‘n) . kinin’l a for all i (4.12)
and
0< Rh < R‘ for all » and { if Y.a 8 (4.13
R‘- is t'poolttu finite number and so {e Rh . The number k with ite component

k‘ is introduced for mathematical convenience to represeat the sign and
gain factor and aleo is a finite number. Thea substituting Eq. (4 12) into

Eq. (¢.10) yields

Youl ® (A) Y, )+ kR y, ] '
(418
s ['-] ‘n]

where the component in the {irst columa of B_ is the sum of the correspending
component of A  and the component of kR _, aad the other compenents of
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two matrices are all identical.

bil = lu + kinm
N
s Q + + k., R
i1 hln i in
l.)1j = a‘j ] Qu fO?j' 2, e 9 (4.15)

This linearised difference equation in its form shown in Eq. (4,14) 18
essentially a nonlinear difference squation because the matrix [B‘] isa
nonlinear matrix containing the nonlinear factor, Rn' However, Eq. (4.14)
is derived without introducing any approximation and is valid inside the
vector space S for all n. And we know that R, is bounded as seen in Eq.

( 413) for all n, hence, applying the stability criterion to the matrix

[Bn] in the same manner for the lineag matrix, we may derive cortain
corditions for the stability of the difference equation of Eq. (4.i4), \ilhg
the boundedness of Rn’ When the condition obtaingd lbwé ie satiefied,

all the eigenvalues of (B _] lie inside the unit circle for all a.

Although this condition does not necessarily guarantes that amy
disturbance Y —> 0 as n — oo, it gives stricter restriction on the stable
region than the condition on the incremenally linearised matrix [A.]
which is derived in the previous section. Also, by evaluating explicitely
the magnitude of the error factor kR, which is caused by the linearisation,
we can estimate the range of S in which the totally linearised matrix
(B,] can be regarded as a time-invariant matrix [B]. Within that region,
the test on the single matrix [B ) ensures the stability of the equilibrium
point. Then, if [Bn] is a stable matrix for all n, {. e., if the eigenvalues
of an] lie inside the unit circle, the equilibrium point is stable within
the region that the matrix (B ] can be regarded as a constant matrix [B).
Such a region can be found by evaluating the magnitude of the srror vector
kR and by comparing it with other time invariant compeneats of the matrix

B

Example 4.1
The total linearization method is illustrated on the PWM system and
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its usefulness will be proved. The linear plant chosen are again first-
and second-order systems.

(1) First-Order System, For the first-order system, the

difference equation is

bh
et = Sp® bT léy(n) e-bT (e 2.1) (4.16)
where
h, = -ay(n)c (4.17)
Obviously X = x =c andQs T and
bh
NX,) = N ) = Bym)e T o 2y (4.18

in Eq. (4.12). The equilibrium point So = 0. The difference squation of
the perturbation y around the origin becomes, from Eq. (4.10) and (4.11)

Yol = Agn + N'(y,) “,17Y
where
N - -bT
An = Q¢+ Wn cn:o =z e -a Ke (4.20
and
a
(i)
y 1 YN 4
N'{y,) = izz bt )
[ ] n c_ =0
n
a0
= - Xin)ePT 2 1+ (- aby(n) y ) (4. 21)
iz2 :

By Eq. (4.12)

N'"(y,) = kR y_ (4, 22)
where k is chosen as follows

k = -aK
Then equating Eqs. (4, 21) and (4, 23), we find Rn
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»
R, * b7 2 ﬁ-(-cb ¥(n) v,)M

i=2

(4,23

It is noticed that -y(n) Ya is always positive because y(n) = -1 when Yo >0
and y(n) « +1 wheny, < 0. Also |oy'| will not exceed the sampling period
T because of saturation. Thus

0 < -cy(n)ynbs_b‘r (-4, 24)
Then, using Eq. (4. 23) and the above result, Rn is bounded as fellows:

bT T“' (b'!‘)‘.l

is2

o_<_nn5.'

. o7 GIT[ebT -1-bT) (4. 25)

= R

The totally linearised difference equation of the perturbation arcund the
origin is from Eq. (4.14)

Yasr * Bp¥y (4. 26)

where Bn is obtained from Eqs. (4.15) and (4. 20)

-bT |
B, = A +kR_ +(l-aK)e " -aKR (4,27

Eq. (4. 26) is stable if
T NS . 28)

Substituting Eq. (4. 27) into the above

-bT

| o (1-eX)-aKR | <1 (4. 29)

This is reawrittea as {ollows:

bT T

00T s ko™ raxr Moo PToamte™on) )20  (4.30)
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The content of the first bracket is positive since a K and R, are non-negative
quantities. Hence, the stability condition is reduced to
-bT
aK < “——e—m @®.319)
R_+e
n
Rn is not a constant, but is restricted between 0 and R for all n by Eq. ( 4.25).
Therefore, the maximum value of R is substituted into Eq. (4.31) in order
to obtain the lowest boundary of a K. Thus

1407 14+ 0T
aK < r—-w s bT -‘—-—-:“— ‘4. 32,
+ e -e

Various important results have been obtained concerning the stability of
the first-order PWM system. . Reviewing and combining the¥e results, a
conclusion of the stability of such system can be derived.

In the first place, it is proved that the longest period of relay mode
oscillation is two sampling periods, us=l, In the second place, the gain
boundary corresponding top = 1 is obtained.

-bT
oK fu=1)= bT 118

1-e
Thus, we may state that no relay mode oscillation can exist below cl(.h s 1).
In the third place, it has been proved that the origin is stable for any pertur-
bation below the gain which is given above. This fact eliminates the possi-
bility of the existence of PWM oscillations or any other irregular ostillations
below a K (s = 1).

By these three steps, we could have successfully eliminated the
existence of all the types of oscillations below cK.h s 1). On the other
hand, it has been shown in the previous section that the relay mode oscillation
can exist above nl(.(u = 1) and is stable. Hence, we have showna that
aK ¢ nl(.(p = 1) is the necessary and sufficient condition for the absolute
stability of the first-order PWM system.
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{2) Second-Order Syetem

Next the case of the second-order system will be discussed. The
transfer function is given by Eq. (2.M) as

KG‘., ] T;K“,
and the difference equations will bs derived »e follows

«bT

oy ® YD) ﬁ- (bh - e.bﬂ.hn) + o ®Ty, €yt 1_%__ ¢,
= fleqe ¢p) (4.33)
¢ = vm ¥ (e.b‘T-h", -e Py e e T e
= gle,, ¢) (4. 34)

Than the components matrix [A.] of Eq. $r14) is given by Eq. (1.15).

1 %2
le] b
ay LY (4, 35)
where
o K “MT-hy)
.“Irc—;SO-‘s—(l'. )*l (4.36
U ] | 1-e°07
12 " ¥E, . —— (4.370)
. .NT.?‘)
8y = T'cln = ~ akKe (4.38)
0 -bT
Azz v 24 . ¢ (4.39)
lé.



Let X0 % Cpe Xy = én' and Yin' Y2n be the corresponding perturbations,
o be the origin. Then (Q) X Jof Eq. (4.2)
represents first two terms in the right hand side of Eqs. (4. 33) and (4. 34)
and N(Xn) represents the last terms of two equations. Obviously N is

and the equilibrium point, S

solely a function of ¢ , sinceh = -a 1(n)cn. The components A of Eq.

(¢.10 ) are given by Eqs. (4. 35) to (4. 38), Choosing k = aK, k, = -aK
in Eq. (4.12) we can find R and RZn'
@ el
Ny = KRy, = }, T ‘Tﬂ—' Yin (4. 40)
i=2 c = 0
n
and
< a“)Nz O
NaUin) = -aKRpyy, = Z S0 Vin| (4. 41)
i=2 n c. =0
n
Then the limiting value of R1 and R, are obtained.
n 2n
From Eqs. (4.33 and (4.40) we have
uKe-bT > 1-1
aKR, == —p— 2 (-a bY(n)Ym) (4. 42)
iz 2
Because of the saturation,
0<-a by(n)yln <bT (4.43)

Hence

iz 2
-bT
e bT
R (e - bT - 1)
b™T

= R =R/b (4. 44)



where R is given by Eq. (4. 2%. Similarly from Eqs. (4.34) and (4.41)

o0
-aKR, = -aKe®T 2 -.},-(b'r)“‘

(4.45)
i=2
Hence, referring to Eq. (4.44)
0 <R, = bR <R (4.46)
The totally linearised form is given by Eq. ( 4.14')
Yn“ ] = [Bn] Yn] (¢.47)

where the components of B_ are given by Eq. (4.15) and Eqs. (4.35) to ( 4.38)

4t oKRy, %2 by b2

(8] » .
85 - oKR,, | *2. B2 522

c =0
(4.48)

[B‘] is stable if the following two conditions are satisfied by im con'u.'mnmu‘.-!z

L (14 Bybyy - bobo Nl = bybyy 4 biyby) > 0 (4.49)
L (1 4By;byy = Biobyy + By + bapll + Byybyy = byobyy = by = by,) > 0
( 4.50)

Condition I is tested first. by using Eqs. (4.35) to (4.38 ) and (4.48)
-bT [
bubzz - bubzl = e + aKR, 4.51)

The coatent of the first bracket is clearly positive since R, is & non-negative
quantity by Eq. (4.44). Hence, the content of the second bracket must be
positive to satisfy Condition 1.

1 > o PT ., oKR _
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K < (4.52)
* u;n

The above inequality is satisfied for all n, if Rln is replaced by its maximum
value which is given by Eq. (4_.44)

bT -bT t’2

l-e (l-e ,! T '
aK <« s
1 1. bTe T .o 07
= “Kd (4.53)

Thus Condition ] is satisfied for all a K < a Kd.
Next, Condition I is investigated. Using Eqs. (4.35) to (4.38) and

(4.48

L+ byyby, = bypby, = by + b))
- 20 e®T)y 5 0 (4.54")
and, also
L4 by;byy = Biaby + By + By
[}
=20+ ey 5K . e Ty 20kR, (4. 55i)

and thie must be positive to satisfy Condition II. Hence,

-bT

aK(L8 — . 28,) < 20+ 7T

(456 )
This inequality is satisfied for all n when RZn is replaced by its minimum
value which is equal to sero by Eq. (4.46). Thus,

-bT
oK < pdlte ) .ok n(4.57")
1-e
It is observed that this a K is identically equal to the lowest gain for the
PWM oscillation of M = 2 which is obtained in reference 1. When these two

conditions are combined we may state that the origin is stable if

-



aK < min (o.Kc. an)

and if the system remains within the region that the matrix [Bn] can be
approximated by a tin.e invariant matrix |B].

Thus we could have succeeded in eliminating all the regular or
irregular oscillations around the origin.

In the first order system, the test on [Bn] gave the absolute stability
boundary °'Kc‘

In the second order system, we could have derived cl(d from Condition
I which could not have been obtained from the incrementally linearised
matrix [An].

We have mainly discussed the saturated oscillations in Chapter 1II,
and the small oscillation has been studied in this chapter.

Combining the results obtained from these two different approaches will
give a good means of solution for the stability problem.

a K(um“) and the experimental stability curve obtained by IBM 704
are shown in Fig. (8). Also min(a K., aK,) are plotted in Fig. (19)
together with the experimental curve. It can be observed that both curves
give sufficiently close values to the experimental data.

The stability condition obtained by Lyapunov's method6 is added to
these figures for the sake of comparison.

54



IBMm EXPERIMENT

|.O—
- 08—

0.6(—
04—

02—

0.l
0l

FIG. 9 XKe,dKg AND EXPERGMENTAL STABILITY BOUNDARY
BY I8M 704

55



CHAPTER V
CONCLUSION

5.1 Conclusion

Periodical oscillations within nonlinear sampled-data systems,
as a whole, has been investigated in this report.

The fundamental equation that gives the exact feature of limit cycles
will be very useful for the precise analysis of such systems. Oscillations
which are almost periodical can also be treated by this equation for an ap-
proximate description of their behavior.

Thus the fundamental equation and its modified equation can be very
powerful tools in investigating the steady state of nonlinear sampled-data
systems. When the periodical input is applied, the same equation yields the
desired responses, and the results are superior in their precision to the one
obtained by the describing-function method. They are based on the transform
method, and can be applied for any order of the plant transfer-function. More-
over, they can be used for any shape of nonlinearities, not necessarily PWM,
but also relay, saturating amplifier and quantised level amplifier.

Similar approaches to the problem d limit cycles are possible as
shown by Shao Da Chmn1 3 by means of the canonical-form representation or
by H.C. Tomgl‘agz means of the discrete-function method. However, in these
studies, setting up of state equations or difference equations for each case is
always required and the size of system aquations will become larger and
iarger when the order of the plant increases.

On the other hand, in our transform method, every equation that gives the
exact feature of responses can be derived from one fundamental equation
which is common to all the plants and to all the nonlinearities.

The steps that must be followed are just substituting the actual form of
the plant transfer-function into the fundamental equation and giving considera-
tion to the particular type of nonlinearities.

- The stability problem was another important topic of this thesis. As
was mentioned in Chapter 1, our attitude towards this problem is microscopic
in contrast to the macroscopic approach such as Lyapunov's second method.
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Kliminating the possible existence of all saturated and unsaturated
oscillations, the sufficient condition for the non-existence of such oscillations
{a the PWM system has been derived and is compared with the experimental
roesults, as well as with the sufficient condition for the asymptotic stability
in the large as derived by Lyapunov's second method.

The skbility boundary derived by our method gives a closer criterion
for the experimental results than that obtained by the Lyapunov method. The
reason for this can be attributed, in the first place, to the difficulty in finding
the best Lyapunov function for the specified types of nonlinearity; in the second
place, to the fundamental property of auch a macroscopic method wherein one
uet expect that the worst case might happen, without paying attention to the
limitation on oscillitions inside the system imposed by the operation of the
aocnlinear functiea.

We weuld never deprecate the approach from the macroscopic peint
of view. We migit even expect that the straightforward method to {find the
best Lyapunov function to give the necessary and sufficient condition for the
stability could be established. However, we believe that out localised
approach is also useful in designing nonlinear sampled-data systems.

5t is frequent that the system designer wishes to eliminate the particular
medes of oscillatiens, especially of the fundamental frequency (half of the
sampliag frequency) or of a few of its subharmonics. Or he may attempt to
elimainate only the escillations of large amplitude which probably remain in the
saturated regioms. In such cases, the method that we have established is
directly applicable; and the designer will obtain the sufficient and satisfactory
{nfermation on his problem without wasting time in the struggle to find a
commprehensive stability condition that may lead to an cxcessively conservative
rooult.

The modification of Neace'smethod to test the stability of an
oquilibrium point is attempted. It is worthwhile to notice that the stability
boundary obtained by this method yields the closed criterion to the experi-
mental result as shown in Fig. 9 -

Empbasie is placed on the PWM system in this thesis, although the
analyeis hao always beon extended to other types of nomnlinearities.

- Ae.fay as the analysis is concerned, no approximatien {s introduced,
such as snmll-signal eemndition or sine-wave approximation. The PWM
centreller is a very semsitive device while it is operating in the unsaturated
zegion; alse by means of its saturating property it prevents the plast frem
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receiving an excessive influence from the input.

We observe in Fig. 9 that the operating region (stable region) of
the PWM systems is rather uniform, due to the flat characteristic of the
stability boundary. Therefore, the range of the choice of sampling frequencies
is very wide. On the other hand, in case of other nonlinearities, the choice
of sampling frequency is rather limited because of the inclined characteristics
of the stability boundary (Figs. 10,11. The PWM system is superior to the
relay system in the sense that the former has a stable region while the latter
can never get rid of the oscillations of the fundamental {requency and its
first subharmonice. Also it is observed experimentally that the PWM system
reaches the equilibrium state considerably faster than the other types of
nonlinearities such as the saturating amplifier with linear region, starting
from the same initial conditions. From this fact, we may state that the
PWM centroller is & more sensitive device than other nonlinear, aniplitude-
dependent controlling devices. And this will offer an advantage to the optimal
control by means of the PWM system.

5.2 Suggestions for Future Work

When the nonlinear sampled-data system is represented by a set of
nonlinear difference equations, it may be reduced to a totally linearised form
as follows:

Y(a4l)] = [By] Y(n))
where Y(n)] is a vector representing the state at the nth sampling instant and
(Bn ) is & totally linearised matrix and is a nonlinear function of Y(n)

We may find a certain region of B, where B, is stable, i.s,, the
eigenvalue of [B,] lies ineide the unit circle if Y(n)belongs to the certain
vector space S,

It was pointed out by Kodama’> that it is false to say that the equi-
librium point is asymptotically stable in the large if [B, ] is stable for all
the points of state space. The above fact is demonstrated by his counter
examples, by shaping the nonlinear gain curve for that purpose.

However, we believe that under certain conditions the above will hald
true. Aad it is worth while to look forward to such conditions. This
possibility {e supported by the following fact. When the matrices (B ]
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and [B, ] are stable, (B, ]z and (B, ]z are aleo stable by the Frobenius
theorem. However, nothing is assured on the stability of the product matrix
[B,]:[B,]. But these two matrices are closely related to each other by the
nonlinear system equation. If this relationship is precisely investigated, we
may find the conditions under which [B) ]-[B, ] becomes also stable. And it
may be extended to the case when the number of multiplied mattices is
increased, possibl to infinity.

Also we noticed that various conclusions that are derived for individual
matrices cannot be applied to their product at all, In general, we have to
carry over the tedious multiplication of matrix elements and we usually
find a very different conclusion from what we expect from the individual
matrix, It will be very helpful if, for example, the stability criteria on
the individual matrix can be extended to the product of matrices without carrying
over the actual matrix multiplication process.

Another suggestion on the study of nonlinear sampled-data systems is
the appropriate use of high-speed digital computors. Nowadays, the digital
computer {s exten sively adopted as a controlling device of sampled-data
systems. However, it can be used for simulating the sampled-data system
in its programs. We can perform any type of experiment on sampled-data
systems that are incorporated in programs of digital computors in the form
of difference equations.

We believe that a complicated conclusion obtained by certain theoretical
investigations can be accepted if it is formulated for sujtable usage of digital
computors, since the digital computor can give the desired data instantly
when it {s wanted. It will be advisable for researchers in sampled-data systems
always to keep the poseible utilisation of digital computors in mind.
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APPENDIX A
EXPERIMENTAL WORKS BY DIGITAL COMPUTORS

In order to verify the theoretical works developed in this repor{ high-
speed digital computors are used extensively.

Because of the basic property of the sampled-data systems that has been
the main mijoct of this thesis, the digital computor is well fitted for
lfaﬁoluh. the system and performing the experimental works.

The function of the closed loop nonlinear sampled-data system as shown
in Fig. (1) ie completely represented by a set of nonlinear difference
equations as Eq. (4.}6) or Eqs. (4.33) and (4.34). These nonlinear difference
equations can be easily incorporated into programs of digital computors
because of their iterative properties. Respomses at the end of every sampling
period can be used as the initial conditions for the following sampling
jnstants; this operation is conveniently performed by using the transfer
command and the index register in digital computors.

Setting of initial conditions is quite arbitrary and the accuracy of the
computation is incompatible with that of analogue computors.

A series of experiments is performed using Beadix 15 to verify the
existence and behavior of limit cycles as derived in Chapter II. Typical
oscillations of PWM mode or relay mode arec observed when suitable ghin
ie given to the system.

nl(c or al(. are accepted as boundary gains and a coanspicuous dif-
ference of behavior of responses is observed on both sides of these critical
goine.

Finally, a series of stability tests is performed in order to endorse
the various stability coundaries obtained in Chapter 11 and Chapter IV.

A wide range of initial conditions (40-50 points distributed oa the phase
plane) is selected, aad for every initial conditiom the responses are cal-
culated up to 100-200 sampling instants in order to examine the convergence
of‘resy mses.

Varying the gain e gradually over the critical regions, the border line
betweea stable and unstabdle regions is traced with good accuracy. These
tests are repeated varying the sampling period T and the results are
plotted as a function of the sampling frequency as shown in Fig, (8)
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and (9).

As an example, the flow chart of the program for the secov? nrder
PWM system is shown in Fig. (12).

This is programmed for the purpose of obtaining the responses of
the second order system at every sampling instant when the initial con-
ditions are specified.
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APPENDIX B
PROOF OF DECREASING CHARACTERISTIC OF ol(.(u)

The objective of this appendix is to prove the gain boundary c!(. for
Baturated oscillation is a monotonically decreasing function of u. When
aK.(p) is given by Eq. (3. 23) for the second-order system, it can be rewritten
as follows.

K { = (B.1)
o Kl 14+2(1- )[Jhﬂ_“._]

buT(l + e

In order to prove the decreasing characteristic of nK.(u). it is enough to

prove the increasing characteristic of the function inside the large bracket of
the denominator of the above equation.
Let

f -bT

Dp) = - (B.2)
T + e P

then, the incremental difference AD{u) is given by
AD(p) = D(u+l) - D) (B.3)

If AD(u) is positive for all , D(u) has a monotonically increasing characteristic.
Substituting Eq. (B. 2) into (B. 3) yields AD(u)

BT g4, bT) - enpee” BT e LpT
anp) = 2T, oT) - g se M@, -bT)

buT(l + e P°T) . bus)T(se W HIPT)

(B. 4)

f(u, -bT) is obtained by substituting -bT into the place of pT in Eq. (3.17)
or in Eq. (3.18). When this is substituted into Eq. (B. 4) the numerator of
AD(p) can be reduced to the following form.

-1
Numerator of AD{p) = 2 2+ )e
t=0

~4bT __-(2-1-1)bT,

-1
2 2 (141)e”
120

1bT Q- .-(Z(u-l )-l)b'l') (B.5)



This is obviously positive for all p which is a positive integer.
Therefore

AD() >0 forpw = 1,2 3, ... (B. 6)

Thue we could prove the monotonic increasing property of D), hence the
monotonic decreasing property of nl(.(u). . A similar property cana be
proved for a K.(p) of unsaturated oscillations. It is givea by Eq. (3. 34) and
is rewritten as follows

oK (u,h) = L (B.7)

Bh
-bT e -l [ { -bT

1+ 201-¢""7) [ Spp— -

e '-1 ubT( + e*°Y)

The function ingide of the large bracket of the denominator of the above
equation is related to D(u) of Eq. (B. 2) as follows

Function imside bracket = %T';% (B. 8)
[} -

Therefore, when D{i) has an increasing property, naturally the above functioa
possesses the same property, which makes ol(.(u. h) have a decreasing

property.
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APPENDIX C

PROOF OF THE RELATION “max(h) £ bm T)

axt

In order to prove the relation that

Pmax () € eyl T) for0 <h < T (c.1)

where Fem “(T) is tae maximum positive integer that satisfies the inequality
of Eq. (3.14) and P u(h) is the maximum positive integer that satisfies the
inequality of Eq. (3.33). We denote the left hand side of Eq. (3. 32) as g(h)

g(b) = g (k) - g,(h) (. 2)
where

gb) = P (-2) (c.3)

g,(h) = ("o | :e_.‘“, l:e'_ :'““ -1) (C. 9
If the following relation is proved,

gh) > g(T)  forh< T (C. 5)

then it implies the relation of Eq. (C.1) since g(b) is a monotonically
increasing function of p.
From the following relation

gz(h) ebh-l k l+2;h;+ . h ‘
ST T CT . = S (.6
14+ -~ +...

we obtain

O L

2 GO 2 g c.n

Let

g (h)

'—lrrrll°c 020 (C.l)



_s'z'ﬂ') = 1-8 p>0 (C.9)

Therefore
gh) - g(T) - (g,(h) - g(T)) = - algy(T) - & gy(T)) > -atgyT) - g(T)) 20

(C.10)

since
gl(T) - 'Z(T) bl '(T) _S 0 for p 5 “mu

Eq. (C.10) implies Eq. (C. 5), thus the proof has been completed.
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